Overview

This project involved creating a scalable, high-availability Kubernetes (K8s) cluster and
deploying essential platform components such as Jenkins, ELK Stack (Elasticsearch,
Logstash, and Kibana), Prometheus, and Grafana using Helm and Kubernetes manifests.
The primary focus was on ensuring the cluster and the deployed services are
production-ready, emphasizing scalability, high availability, and security.

Objectives

Building and Containerizing a Java Application

Create a Production-Ready Kubernetes Cluster

Deploy Platform Services (Jenkins, ELK, Prometheus, Grafana)
Implement CI/CD for Application Build and Deployment
Document Implementation and Design Decisions

Next Steps for Further Development

o wN =

AWS as the Chosen Platform

AWS was chosen for its robust security features, high availability, scalability, and extensive
ecosystem. My personal experience with AWS services and tools further facilitated efficient
setup and management of the infrastructure.

Benefits of AWS:

Security: Advanced security features and compliance certifications.
Availability: Multiple availability zones and regions ensure high availability.
Scalability: Easy to scale resources up or down based on demand.
Experience: My prior experience with AWS services.

1. Building and Containerizing a Java Application

To containerize the Java application, we use a Dockerfile with multi-stage builds.

Stage1: Use an official Maven image to build the application

FROM maven:3.8.4-openjdk-11 AS build

WORKDIR /app

COPY ..

Unset MAVEN_CONFIG to avoid lifecycle phase issues

ENV MAVEN_CONFIG=

RUN chmod +x ./mvnw && ./mvnw clean package

Stage2: Use an official OpenJDK image to run the application

FROM openjdk:11-jre-slim

WORKDIR /app

COPY --from=build /app/target/app-0.0.1-SNAPSHOT.jar app.jar

EXPOSE 9001

ENTRYPOINT ["java", "-jar", "app.jar"]

Q_ search Docker Hub

w' dockerhub Explore Repositories Organizations
ardaakkiz / Repositories / sample-java-app / Tags
General Tags Builds Collaborators Webhooks Settings

|

|

Sort by Newest - Filter Tags Q

TAG
@ latest

Last pushed a day ago by ardaakkiz

Digest OS/ARCH Last pull

9d3be7529d38 linux/amdé4 9 minutes ago

Using 0 of 1 private repositories. Get more

docker pull ardaakkiz{samplef]avafappzlatest

Compressed Size ©

90.43 MB

2. Creating a Production-Ready Kubernetes Cluster

Cluster Setup

e Cloud Provider: AWS EKS (Elastic Kubernetes Service) for managed Kubernetes.
Instance Types: Selected t3 . medium instances for balanced CPU and memory
resources.

e High Availability: Deployed nodes across multiple availability zones in the
us-east-1 region.

e Networking: Configured VPC, subnets, and security groups to ensure secure and
efficient communication between nodes and services.

Scalability

e Auto Scaling: Configured cluster autoscaler to automatically adjust the number of
nodes based on the workload.

e Resource Requests and Limits: Defined resource requests and limits for each pod
to ensure optimal resource allocation and prevent resource contention.

Security

e |IAM Roles and Policies: Configured IAM roles and policies for Kubernetes nodes to
securely access AWS services.

e RBAC: Implemented Role-Based Access Control (RBAC) to manage permissions
and access control within the cluster.

e Network Policies: Defined network policies to control traffic between pods,
enhancing security and compliance.

Infrastructure as Code with CloudFormation

Using AWS CloudFormation, we treated infrastructure as code, which offers several benefits:

e Version Control: Infrastructure changes can be tracked and managed in version
control systems.

e Reusability: Templates can be reused for different environments (development,
staging, production).

e Consistency: Ensures consistent setups across different environments.

3. Platform Deployments

Jenkins

e Deployment Method: Jenkins was planned to be deployed using Kubernetes
manifests. However, I've encountered a critical issue where the Docker daemon was
not found within the Jenkins container even though the socket was mounted. To
avoid security issues and data corruption risks associated with Docker-in-Docker
(DinD), Jenkins was manually installed on the second worker node (an EC2
instance). This approach provided more control over the Jenkins environment and
ensured compatibility with our existing infrastructure.

e Persistence: Leveraged the persistent storage of the EC2 instance for Jenkins home
directory to retain job configurations.

e Security: Set up admin credentials, enabled RBAC, and configured secure access.

Jenkins CI/CD pipeline results

@ AliArda Akkiz (3 gikis

Kontrol Merkezi
+ YeniOge 7 Agiklama ekle
& Yapilandirma Gegmisi

@ Proje iligkileri
s w Name En Son Bagar En Son Bagansizhk En Son Siire

@ Dosya Parmakizini Kontrol Et
®© O build-pipeline 1ginTisaat #2 TginT1saat #1 1 dakika 20 saniye >
83 Jenkins'i Yonet

© deploy-pipeline 13saat #4 Mevcut Degil 18 saniye >
[Kisisel Gériiniimler © ploy-p " .

® @ deploy-test 13saat #16 13saat #15 13 saniye
Yapilandirma Sirasi v

Sirada bekleyen yapilandirma yok. kon: M L

Yapilandirici Durumu v
1 Beklemede

2 Beklemede

Cloud Statistics v

o RESTAPI Jenkins 2.4522

build and deploy pipelines can be viewed at my public github repo:
https://github.com/ardaakkiz/app

ELK Stack

The ELK stack (Elasticsearch, Logstash, Kibana) was deployed for centralized logging and
monitoring.

Elasticsearch and Kibana

Elasticsearch and Kibana were deployed using Kubernetes manifests to ensure they could
scale with the cluster and leverage Kubernetes’ orchestration capabilities. Credentials as
kubernetes secrets with required configuration files and security groups, kibana can be
accessed from the internet with authentication.

e Logstash: Deployed manually on the EC2 instance. Configured input pipelines.

= iscover ey ave en h: Inspect
B~ Ssearch KaL f@ v Jun16,2024 @ 09:50:00.0 - Jun 16,2024 @ 09:50:30.0 C Refresh
® +Add filter

logs-* v = 1hit

Q search field names Jun 16, 2024 @ 09:50:00.000 - Jun 16, 2024 @ 09:50:30.000 Auto ~

© Filter by type 0 !
Selected fields o
‘ .

@timestamp per second

€ _type Time

> Jun 16, 2024 € 09:50:22.686 path: /var/log/boot.log @timestamp: Jun 16, 2024 © 89:50:22.686 message: Jun 16 06:50:22 ip-10-8-2-82 NET: dnclient: Locked /run/dhclient/resolv.lock @version: 1 host: ip-10-8-2-
82.ec2.internal _id: oVOPHSABWA7PfVBSrorh _type: _doc _index: logs-2624.06.16 _score

0'.0
Welcome to Elastic

You have logged out of Elastic.

Username.

Prometheus and Grafana

e Prometheus: Deployed using Helm (prometheus-community/prometheus).
Configured service discovery for Kubernetes targets.

e Grafana: Deployed using Helm (grafana/grafana). Configured Prometheus as a
data source and imported pre-built dashboards for Kubernetes and application
monitoring.

= Home > Dashboards

= Dashboards

. § . - x
|88 Dashboards [\ This dashboard depends on Angular, which is deprecated and will stop working in future releases of Grafana.

Read our depre 1 notice a gration ad:

[Ty migr

« Cluster Health

Cluster Pod Usage Cluster CPU Usage Cluster Memory Usage Cluster Disk Usage

N/A N/A N/A N/A

Cluster Pod Capacity Cluster CPU Capacity Cluster Mem Capacity Cluster Disk Capacity

o
07:30 0735 07:40 07:45 O;
= requested

- Deployments

Deployment Replicas - Up To Date £\ Deployment Replicas Deployment Replicas - Updated Deployment Replicas - Unavailable

14 14

Home > Dashboards

Datasource | default Job Kubernetes-service-endpoints Host 10.0115:9100 @ Githuo | | & Grafana

~ Quick CPU / Mem / Disk
- |88 pashboards
Pressure CPU Busy Sys Load SWAP Used Root FS Used Uptime

cpu | 2 1.5 days

wem | . / \ RootFS 1 RAM Tot SWAP Tc

vo | . / 206iB 4GB 0B
~Basic CPU / Mem / Net / Disk

CPU Basic Memory Basic

0B
08:00 10:00 1200 14:00 16:00 18:00 00 2200 0000 0200 04:00 06:00 08:00 10:00 1200 1400 16:00 18:00 20:00 2200 00:00 0200 04:00 06:00
= BusySystem BusyUser Busy lowait = Busy IR(Busy Other = dle = RAMTotal = RAMUsed RAM Cache + Buffer — RAM Free /AP Used
Network Traffic Basic Disk Space Used Basic
100%
200 kb/s

0bls |}

8:00 10:00 1200 14:00 16:00 2 2 00:00 02:00 04:00 06:00 00 10:00 : 16:00 18:00 20:00 2200 00:00 0200 04:00 06:00
= recv enil8cb8ae5435 == recv enic71f03eaed o cv =
recv enlSfb13d4gals — recy eni7ag40de2: v en recy enic19e89p5dco = [run/containerd/i e /sandboxes/1026e05610a117c6Ch689eb2d585a18b{c14693390218583ad08bbA6769ch(

recv enid64cad2ade0 = rec trans enilBcbBae543s = Irunjcontainerd/io.containerd.grpc.vi.cri/sandboxes/2571befe145b74559cTIc0ed5a83fd1c010d5c7fef1629a621792d161e089b,

CPU / Memory / Net / Disk

4. Application Build and Deployment Stages

Build Stages

e Source Code Management: Integrated with Git for source control.
e Build Automation: Configured Jenkins pipelines to automate the build process,
including compiling code, running tests, and creating Docker images.

Deployment Stages

e Continuous Deployment: Configured Jenkins pipelines for automated deployment
to Kubernetes.

e Ansible for Configuration Management: Used Ansible playbooks to manage
configuration and deployment tasks across different environments.

Implementing Canary Deployments

Canary deployments release a new application version to a small subset of users to
monitor its performance and impact before a full rollout. This helps detect issues early and
mitigate risks.

Tools for Canary Deployments

1. Kubernetes: Offers built-in capabilities for canary deployments via Deployment and
Service objects, managed using kubectl and Helm.

2. lstio: A service mesh that manages traffic routing and monitoring, allowing
fine-grained control over traffic distribution between different versions.

3. Argo Rollouts: Enhances deployment strategies including canary, integrating well
with CI/CD pipelines for progressive delivery.

Traffic Management

e Istio or Similar Tools: Create a VirtualService to route a small percentage of traffic
to the canary version.

Monitoring and Rollback

e Prometheus and Grafana: Monitor metrics and logs. Rollback can be automated or
manual if issues are detected.

By integrating these tools and strategies into our CI/CD pipeline, we ensure a smooth and
reliable deployment process, minimizing risks and improving stability.

5. Documentation of Implementation and Design
Decisions

Kubernetes Cluster

Cluster Configuration: Documented the cluster configuration, including instance
types, networking setup, and security policies.

Scaling Policies: Detailed the auto scaling configuration and resource management
strategies.

Platform Deployments

Helm Charts & K8S Manifests: Documented the Helm charts used for deploying
Jenkins, ELK Stack, Prometheus, and Grafana.

Configuration Files: Included configuration files and values used for customizing the
deployments.

Persistence Strategy: Explained the persistent storage setup and its importance for
data durability.

CI/CD Pipeline

Jenkins Pipelines: Provided the Jenkins pipeline scripts used for building and
deploying applications.

Ansible Playbooks: Included Ansible playbooks for configuration management and
deployment tasks.

Deployment Strategy: Detailed the deployment strategy.

6. Next Steps for Further Development

e Automated Rollback: Implement automated rollback mechanisms in Jenkins
pipelines to revert to previous stable versions in case of deployment failures.

e Prometheus and Grafana Dashboards: Enhance monitoring by creating more
detailed and application-specific dashboards in Grafana.

e Alerting Rules: Define more granular alerting rules in Prometheus to detect and
notify on potential issues earlier.

e Log Aggregation: Improve log aggregation and search capabilities by tuning
Elasticsearch and Kibana configurations.

e Blue-Green Deployments: Introduce blue-green deployment strategies to minimize
downtime and reduce risk during deployments.

e Progressive Delivery: Utilize Argo Rollouts for more advanced deployment
strategies like progressive delivery, where traffic is gradually shifted from the old to
the new version.

e Vulnerability Scanning: Integrate security vulnerability scanning tools into the CI/CD
pipeline to identify and mitigate potential security risks in dependencies and container
images.

e Network Policies: Strengthen network policies within Kubernetes to limit
communication between services to only what is necessary.

e |IAM Role Refinement: Refine IAM roles and policies for least privilege access to
AWS services.

e Terraform Integration: Move infrastructure provisioning from CloudFormation to
Terraform for better modularity and reusability.

e Configuration Management: Use tools like Ansible and Puppet more extensively for
managing and maintaining configurations across environments.

e Horizontal Pod Autoscaling (HPA): Implement Horizontal Pod Autoscaling to
automatically adjust the number of pods based on CPU/memory usage or custom
metrics.

e Cluster Autoscaler Tuning: Fine-tune the cluster autoscaler settings to improve
scaling efficiency and response times.

e Structured Logging: Standardize on structured logging across all services to
improve log parsing and analysis.

e Custom Metrics: Develop and expose custom application metrics to Prometheus to
gain deeper insights into application performance and behavior.

e Detailed Documentation: Expand documentation to cover all aspects of the
infrastructure, deployments, and CI/CD processes.

e Resource Optimization: Continuously monitor and optimize resource usage to
reduce costs without compromising performance.

e Reserved Instances and Savings Plans: Leverage AWS Reserved Instances and
Savings Plans for cost savings on compute resources.

e Service Mesh: Evaluate and possibly integrate a service mesh like Istio for better
traffic management, security, and observability.

e Serverless Functions: Investigate the use of AWS Lambda for certain workloads to
improve scalability and reduce operational overhead.

Conclusion

The project successfully established a production-ready Kubernetes cluster and deployed
essential platform services using Helm and Kubernetes manifests. The implementation
focused on scalability, high availability, and security to ensure a robust and resilient
environment for running applications. The documented implementation and design decisions
provide a comprehensive guide for maintaining and scaling the setup as needed.

